The electric power grid operates based on a delicate balance between supply (generation) and demand (consumer use). One way to help balance fluctuations in electricity supply and demand is to store electricity during periods of relatively high production and low dehttps://www.acdcbess.com/it/self-cooling-pw-164-outdoor-distributed-energy-storage-cabinet-power-type.htmlmand, then release it back to the electric power grid during periods of lower production or higher demand. In some cases, storage may provide economic, reliability, and environmental benefits. Depending on the extent to which it is deployed, electricity storage could help the utility grid operate more efficiently, reduce the likelihood of brownouts during peak demand, and allow for more renewable resources to be built and used.
Energy can be stored in a variety of ways, including:
In addition to these technologies, new technologies are currently under development, such as flow batteries, supercapacitors, and superconducting magnetic energy storage.
According to the U.S. Department of Energy, the United States had more than 25 gigawatts of electrical energy storage capacity as of March 2018. Of that total, 94 percent was in the form of pumped hydroelectric storage, and most of that pumped hydroelectric capacity was installed in the 1970s. The six percent of other storage capacity is in the form of battery, thermal storage, compressed air, and flywheel, as shown in the following graph:
Storing electricity can provide indirect environmental benefits. For example, electricity storage can be used to help integrate more renewable energy into the electricity grid. Electricity storage can also help generation facilities operate at optimal levels, and reduce use of less efficient generating units that would otherwise run only at peak times. Further, the added capacity provided by electricity storage can delay or avoid the need to build additional power plants or transmission and distribution infrastructure.
Potential negative impacts of electricity storage will depend on the type and efficiency of storage technology. For example, batteries use raw materials such as lithium and lead, and they can present environmental hazards if they are not disposed of or recycled properly. In addition, some electricity is wasted during the storage process.