Energy storage power station
  • HOME
  • NEWS&BLOGS
  • Reducing Emissions from Peaker Plants-energy storage systems

Jan . 11, 2024 16:17 Back to list

Reducing Emissions from Peaker Plants-energy storage systems



In the transition towards a more sustainable and resilient energy system, battery energy storage is emerging as a critical technology. Battery energy storage enables the storage of electrical energy generated at one time to be used at a later time. This simple yet transformative capability is increasingly significant. The need for innovative energy storage becomes vitally important as we move from fossil fuels to renewable energy sources such as wind and solar, which are intermittent by nature. Battery energy storage captures renewable energy when available. It dispatches it when needed most – ultimately enabling a more efficient, reliable, and sustainable electricity grid. This blog explains battery energy storage, how it works, and why it’s important.

HOW BATTERY ENERGY STORAGE WORKS

At its core, a battery stores electrical energy in the form of chemical energy, which can be released on demand as electricity. The battery charging process involves converting electrical energy into chemical energy, and discharging reverses the process. Battery energy storage systems manage energy charging and discharging, often with intelligent and sophisticated control systems, to provide power when needed or most cost-effective. The components of a battery energy storage system generally include a battery system, power conversion system or inverter, battery management system, environmental controls, a controller and safety equipment such as fire suppression, sensors and alarms.

THE IMPORTANCE OF BATTERY ENERGY STORAGE

For several reasons, battery storage is vital in the energy mix. It supports integrating and expanding renewable energy sources, reducing reliance on fossil fuels. Storing excess energy produced during periods of high renewable generation (sunny or windy periods) helps mitigate the intermittency issue associated with renewable resources. It also provides grid stability and resilience, as it can respond quickly to grid demand and supply changes.

 

 

Distributed Outdoor Energy Storage Cabinet Self-Cooling-EN-215

 

 

 

 

Here are some of the more prominent reasons that make battery energy storage critically important:

Enabling Renewable Energy

As mentioned, renewable energy sources such as wind and solar are intermittent, producing energy only when the wind blows, or the sun shines. The periods when these sources generate energy do not always align with when energy demand is highest. A battery energy storage system (BESS) allow storing energy when production is high, which can then be used later when demand is high. Integrating renewable energy with storage enables a more significant proportion of energy to come from renewable sources.

Grid Resiliency and Reliability

As we shift to a renewable energy future, our electrical grid must adapt to handle increased variability and decentralization. A BESS can help stabilize the grid by absorbing excess power during periods of high production and releasing it during periods of high demand. Utilizing a BESS in this way can help reduce blackouts and enable a more consistent grid power supply. This resilience is especially crucial during extreme weather events, which we see more of worldwide.

Reducing Emissions from Peaker Plants

Peaker plants operate only when there is a high demand for electricity, or “peak” demand. These plants usually run on fossil fuels and are less efficient than other power generation sources as they emit more greenhouse gases. A BESS can reduce reliance on these plants by storing energy during periods of low demand and supplying it during these peak demand periods.

Supporting Electrification

The electrification of many industries currently powered by fossil fuels is needed to achieve a zero-emissions future. These industries include transportation and heating, moving away from internal combustion engines and gas boilers to electric-powered equivalents, such as electric vehicles and heat pumps. The transition to electrification will increase electricity demand and put further strain on the grid. A BESS can help manage the increased demand and smooth out consumption, enabling the integration of these electric loads into the energy mix without significantly expanding power generation capacity.

An installation of a 100 kW / 192 kWh battery energy storage system along with DC fast charging stations in California

Energy Independence

On a more localized level, a BESS allows homes and businesses with solar panels to store excess energy for use when the sun isn’t shining. Using a battery energy storage system in this way increases energy independence. It reduces reliance on the grid, reducing emissions associated with energy production and transmission.

Battery energy storage is essential to enabling renewable energy, enhancing grid reliability, reducing emissions, and supporting electrification to reach Net-Zero goals. As more industries transition to electrification and the need for electricity grows, the demand for battery energy storage will only increase.

THE BENEFITS OF BATTERY ENERGY STORAGE SYSTEMS

A battery energy storage system (BESS) offer several compelling benefits that make them an increasingly important part of our energy landscape. These include:

Grid Stabilization

A BESS can absorb or release electrical power almost instantly, providing valuable services in balancing power supply and demand, stabilizing the grid, and maintaining a steady frequency.

Renewable Energy Integration

A BESS can store excess energy produced from renewable energy sources like wind and solar when production exceeds demand and then release it when demand exceeds production, such as when the sun is not shining, or the wind is not blowing. This helps deal with the intermittent nature of these energy sources and makes them more reliable and usable.

Peak Shaving

By storing energy during low-demand periods and releasing it during high-demand periods, a BESS can help to reduce electricity demand on the grid during peak periods. This ‘peak shaving‘ can reduce the need for peaker plants, which are expensive and often powered by fossil fuels, leading to both cost and environmental benefits.

Energy Arbitrage

With the capability to store energy when prices are low and dispatch it when prices are high, a BESS facilitates energy arbitrage, potentially creating significant financial savings or generating additional revenue streams.

Backup Power

A BESS can provide backup power during a power outage, increasing energy resilience and reliability for homes, businesses, and critical infrastructure.

Grid Independence and Self-Consumption

A BESS enables greater energy self-sufficiency for homes and businesses with their own renewable energy generation (like solar panels on the roof). They can store excess power generated from on-site sources for use when needed, reducing their reliance on the grid and allowing more efficient use of the generated power.

Support for Electric Vehicle Charging

With the rise of EVs, a battery energy storage system integrated with charging stations can ensure rapid charging without straining the power grid by storing electricity during off-peak hours and dispensing it during peak usage. Adding a BESS to an EV charging station installation can also stretch the available capacity and help drastically reduce demand charges.

Utilizing a BESS represents a solution to many of the challenges facing the current energy mix today.

TYPES OF BATTERY ENERGY STORAGE

There are several types of battery technologies utilized in battery energy storage. Here is a rundown of the most popular.


If you are interested in our products, you can choose to leave your information here, and we will be in touch with you shortly.